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Short note

The low-lying isoscalar giant dipole resonance
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Abstract. This short note is aimed to comment on the recently observed low component of the isoscalar
giant dipole resonance in connection with the theoretical predictions made by microscopic and hydrody-
namical models.

PACS. 24.30.Cz Giant resonances

Very recently, isoscalar giant dipole resonances (IS-
GDR) in the magical nuclei 90Zr, 116Sn and 208Pb were
investigated by inelastic scattering of 240 MeV α-particles
at small angles. The α-particles beam was produced by
the Texas A& M K500 superconducting cyclotron, the ex-
perimental findings being reported in a first version in
ref. [1] and shortly after in a second version with addi-
tional data [2]. The authors concluded that the isoscalar
E1 strength distribution in each nucleus contains a narrow
component at Ex ≈ 72/A1/3 MeV which covers 15–28%
of the total strength. There was also found a broad com-
ponent at Ex ≈ 114/A1/3 MeV. The object of the present
short note is to comment on the nature of the low-lying
component of the ISGDR in light of the theoretical pre-
dictions.

In a series of very recent publications [3,4], the group
of Münich calculated the ISGDR structure of the same
nuclei as those investigated by the Texas A& M group
at College Station, in the framework of a fully consistent
relativistic random phase approximation. In agreement to
the experiment they obtained a high-lying and a low-lying
region of noticeable strength of the ISGDR. They sug-
gested that the low-lying component might correspond to
the putative “toroidal giant dipole resonance” or dipole
torus mode (DTM). This kind of collective excitation for
spherical nuclei can be described from a classical point
of view as an in-phase motion of protons and neutrons
along closed stream lines, which by rotation around the
nucleus axis are generating tori. In classical hydrodynam-
ics a similar kind of vortical flow is known under the name
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of Hill’s vortex [5]. It was pointed out for the first time in
ref. [6] that in the framework of nuclear hydrodynamics, a
new non-irrotational state of the dipole electric type, with
isospin T = 0, is occuring at energy 68/A1/3 MeV. Essen-
tial was that this state is related to the term multiplying
the squared momentum transfer k = ω/c in the expansion
of the dipole transversal electric form factor, known under
the name of toroidal dipole moment [7]. Later on, using
the method of moments of the Wigner function [8] it was
obtained for the same case, i.e. spherical nuclei with sharp-
edge surface, a 1−, T = 0 resonance at 65.6/A1/3 MeV,
which is very close to the one computed earlier in [6]. This
was to be expected since both formalisms were based on
semiclassical arguments.

Reference [9] was probably the first paper in the liter-
ature dedicated exclusively to the study of the DTM. Us-
ing the “thirteen moments approximations” of the nuclear
fluid dynamics, we predicted the energy of the DTM, de-
rived its electric form factor and evaluated its contribution
to the cross-section of photoabsorbtion. It is neceessary to
mention that at that time, the most recent experimen-
tal data abvailable in the literature on the dipole electric
isoscalar resonances were those of the Groeningen group.
According to [10], a low-energy, 1�ω, 1−, T = 0 resonance,
was observed using the (α, α′γ) reaction at 0◦. Our esti-
mate of 1992, lead us to the conclusion that DTM is differ-
ent from the low-energy resonance 1�ω reported by Poel-
hekken et al. We interpreted the DTM as a 2�ω isoscalar
dipole resonance. In the summary of our paper we also
noted that “...the torus excitation is not related to the
spin and isospin degrees of freedom . This mean that the
measurements with isoscalar spinless probes is presumed
to be more preferable”.
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Table 1. The lower component ISGDR energy centroids in
MeV reported in experiment (Exp) and predicted by micro-
scopical (ThII) and hydrodynamical models (ThI).

A Exp [2] ThI [6,8,9] ThII [4]

208Pb 12.2 ± 0.6 11–14.3 9.6–9.8
116Sn 14.7 ± 0.5 13.3–17.4 11.5–12
90Zr 16.2 ± 0.8 14.5–18.9 11.7–13.2

In table 1 we summarized the experimental values of
the ISGDR energies reported in ref. [2] and the theoretical
predictions given by the various theoretical approaches.
As one can see the predictions made by the hydrodynam-
ical models [6,8,9] are closer to the experimental values
of Clark et al. The centroids predicted by the microscopic
model of refs. [3,4] lie outside the range predicted by the
macroscopic models and by 1.5–3 MeV lower than the ex-
perimental centroids. At this point one should mention the
microscopical calculations performed almost two decades
ago by Serr et al. [11] within the RPA method with the
Skyrme-type interaction SGII. For the case 208Pb only
one 1−, isoscalar collective vibrational state was obtained
using an excitation operator r3Y1µ, which however was
not corrected for the center-of-mass motion like in [6,9,4].
This state is located at 24.4 MeV and is of compressional
nature. The recent calculations of Vretenar et al. [4] are
providing a value between 14.3 and 15.6 MeV, whereas
the experiment [2] reported a value of 19.9 MeV, which
obviously lie between the two predicted centroids of the
microscopical calculations. So even for the high-lying IS-
GDR, the microscopical centroids are not in a very good
agreement with experiment.

In conclusion one could say that the recently computed
low-lying component of the ISGDR [4], which is claimed
to be of a toroidal-like resonance, is not in a very good
agreement with the experimental observations. It seems
that the older hydrodynamical calculations are providing
ranges of values of the energy centroids which contain in-
side the experimental values.
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